Hybrid Fuzzy AHP and Fuzzy TOPSIS Decision Model for Aquaculture Species Selection

Author:

Padma T.1ORCID,Shantharajah S. P.2,Ramadoss P.3

Affiliation:

1. Department of Computer Applications, Sona College of Technology, Salem 636005, Tamilnadu, India

2. School of Information Technology and Engineering, Vellore Institute of Technology (VIT), Vellore 632014, Tamilnadu, India

3. Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

Abstract

Worldwide demand for fish products is increasing continuously. Literature evidence indicates that there is a persistent decrease in ocean fisheries’ supply. Aquaculture bridges the gap between the reduced ocean fish supply and increased world fish food demand. Sustainable and profitable aquaculture is firmly facilitated by selective fish species. Species selection has been achieved through deeply analyzing the manifold and complex interrelationships between the numerous subjective risk categories intricate in aquaculture. Apparently an analytical system able to analyze massive subjective stakes in terms of its quantifiable equivalent that aids selecting an optimal fish species is nontrivial. This research provides quantifiable metrics that eases the analytical struggle towards the subjective aspect of species selection. The novelty involves providing hybrid multi-criteria-based viable decision support methodology that analyses extensive aquaculture domain knowledge and inference and emulates the logic and reasoning process so as to choose an optimal fish species for aqua farming. The methodology is based on the assessment of several species in accordance with analyzing numerous associated criteria and sub-criteria of risk factors. This research consists of nineteen sub-criteria which were classified under five comprehensive heads of evaluation criteria such as environmental, nutritional, disease outbreaks, biotic and physiological risk categories. The weight scores for each criteria and sub-criteria were determined using the Fuzzy Analytical Hierarchy Processing (FAHP) method. Consequently using the derived priority weights, the best fish species to choose from several alternative species is identified based on the relative closeness values and ranks assigned to them by applying the fuzzy Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) method. A case study is performed on five varieties of most favored fish species for consumption to exemplify the effectiveness of the proposed model. The sturdiness of the suggested model is validated against the two standing multiple criteria decision-making approaches such as fuzzy ordered weighted average and fuzzy extent analysis–fuzzy weighted average methods. The research outcome strongly aids aqua farmers to identify an optimal fish species.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation Method of Japanese Teaching Effect Based on Feature Offset Compensation;International Journal of Computational Intelligence Systems;2023-06-27

2. Selection of promotional media on tourist boats with fuzzy AHP and fuzzy TOPSIS;International Journal of ADVANCED AND APPLIED SCIENCES;2023-05

3. A Hybrid Evaluation Model for e-Learning Platforms Based on Extended TOE Framework;International Journal of Information Technology & Decision Making;2023-04-12

4. A Hybrid Fuzzy AHP-TOPSIS Approach for Implementation of Smart Sustainable Waste Management Strategies;Sustainability;2023-04-12

5. Cloud probability: A new uncertain model with fuzziness and randomness properties;Journal of Intelligent & Fuzzy Systems;2023-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3