A Causal Time-Series Model Based on Multilayer Perceptron Regression for Forecasting Taiwan Stock Index

Author:

Chen Tai-Liang1,Cheng Ching-Hsue2,Liu Jing-Wei3

Affiliation:

1. Department of Digital Content Application and Management, Wenzao Ursuline University of Languages, Kaohsiung, Taiwan 807, R.O.C.

2. Department of Information Management, National Yunlin University of Science and Technology, Yunlin, Taiwan 640, R.O.C.

3. Department of Sport Information and Communication, National Taiwan University of Sport, Taichung, Taiwan 404, R.O.C.

Abstract

Stock forecasting technology is always a popular research topic because accurate forecasts allow profitable investments and social change. We postulate, based on past research, three major drawbacks for using time series in forecasting stock prices as follows: (1) a simple time-series model provides insufficient explanations for inner and external interactions of the stock market; (2) the variables of a time series behave in strict stationarity, but economic time-series are usually in a nonlinear or nonstationary state and (3) the forecasting factors of multivariable time-series are selected based on researcher’s knowledge, and such a method is a “subjective” way to construct a forecasting model. Therefore, this paper proposes a causal time-series model to select forecasting factors and builds a machine learning forecast model. The “Granger causality test” is utilized first in the proposed model to select the critical factors from technical indicators and market indexes; next, a “multilayer perceptron regression (MLPR)” is employed to construct a forecasting model. This paper collected financial data over a 13-year period (from 2003 to 2015) of the Taiwan stock index (TAIEX) as experimental datasets. Furthermore, the root mean square error (RMSE) was used as a performance indicator, and we use five forecasting models as comparison models. The results reveal that the proposed model outperforms the comparison models in forecasting accuracy and performs well for three key indicators. LAG1, S&P500 and DJIA, are critical factors in all 11 of our time sliding windows (T1–T11). We offer these results to investors to aid in their decision-making processes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3