Affiliation:
1. Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Abstract
In various areas of modern physics and in particular in quantum gravity or foundational space–time physics, it is of great importance to be in the possession of a systematic procedure by which a macroscopic or continuum limit can be constructed from a more primordial and basically discrete underlying substratum, which may behave in a quite erratic and irregular way. We develop such a framework within the category of general metric spaces by combining recent work of our own and ingeneous ideas of Gromov et al. developed in pure mathematics. A central role is played by two core concepts. For one, the notion of intrinsic scaling dimension of a (discrete) space or, in mathematical terms, the growth degree of a metric space at infinity, on the other hand, the concept of a metrical distance between general metric spaces and an appropriate scaling limit (called by us a geometric renormalization group) performed in this metric space of spaces. In doing this, we prove a variety of physically interesting results about the nature of this limit process, properties of the limit space, e.g., what preconditions qualify it as a smooth classical space–time and, in particular, its dimension.
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献