Abstract
AbstractModels of quantum walks which admit continuous time and continuous spacetime limits have recently led to quantum simulation schemes for simulating fermions in relativistic and nonrelativistic regimes (Molfetta GD, Arrighi P. A quantum walk with both a continuous-time and a continuous-spacetime limit, 2019). This work continues the study of relationships between discrete time quantum walks (DTQW) and their ostensive continuum counterparts by developing a more general framework than was done in Molfetta and Arrighi (A quantum walk with both a continuous-time and a continuous-spacetime limit, 2019) to evaluate the continuous time limit of these discrete quantum systems. Under this framework, we prove two constructive theorems concerning which internal discrete transitions (“coins”) admit nontrivial continuum limits. We additionally prove that the continuous space limit of the continuous time limit of the DTQW can only yield massless states which obey the Dirac equation. Finally, we demonstrate that for general coins the continuous time limit of the DTQW can be identified with the canonical continuous time quantum walk when the coin is allowed to transition through the continuous limit process.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Modelling and Simulation,Signal Processing,Theoretical Computer Science,Statistical and Nonlinear Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献