Some interactions of spherically symmetric massive scalar field with Brans–Dicke scalar field in Robertson–Walker universe

Author:

Singh Kangujam Priyokumar1ORCID,Baruah Rajshekhar Roy1

Affiliation:

1. Department of Mathematical Sciences, Bodoland University, Kokrajhar, Assam 783370, India

Abstract

Here in this work, we investigated the possible cosmological consequences of the interaction of Brans–Dicke scalar field and massive scalar field by considering spherically symmetric Robertson–Walker metric. The present problem can also be treated as an extension work of [K. Priyokumar et al., Interaction of gravitational field and Brans–Dicke field, Res. Astron. Astrophys. 16(4) (2016) 64; K. Priyokumar and M. Dewri, Interaction of electromagnetic field and Brans–Dicke field, Chinease J. Phys. 54 (2016) 845]. The exact solutions of the field equations are obtained with seven different cases. The behavior of the model and their contribution to the process of the evolution are examined in detail from some explicit and reasonable values of free parameter. We also presented the variations of certain physical parameters versus cosmic time graphically to compare our solutions with the present observational findings. When we studied further, it is found that the cosmological term [Formula: see text] takes a great role in the accelerating expansion of our universe when both scalar fields are exponentially increasing functions of time, while the cosmological term will not appear in the case when both the scalar fields are exponentially decreasing functions of time. Also, the scalar field is seen to have a tendency to increase the expansion of the universe, thereby flattening the universe.

Funder

funding.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anisotropic MHRDE model in BD theory of gravitation;International Journal of Geometric Methods in Modern Physics;2019-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3