Anisotropic MHRDE model in BD theory of gravitation

Author:

Pradhan Anirudh1ORCID,Dixit Archana1,Singhal Shilpi2

Affiliation:

1. Department of Mathematics, Institute of Applied Sciences and Humanities, GLA University Mathura-281406, Uttar Pradesh, India

2. Department of Mathematics, DIT University, Mussoo diversion road, Dehradun 248009, India

Abstract

In this paper, in the framework of the Brans–Dicke [Phys. Rev. 124 (1961) 925] Gravitation theory, we propose to study the spatially homogeneous, anisotropic and axially symmetric model filled with dark matter and dark energy. Here, we consider the modified holographic Ricci dark energy proposed by Chen and Jing [Phys. Rev. B 679 (2009) 144] as a feasible state of darkness. To achieve a solution, we consider the time-dependent deceleration parameter, which contributes to the average scale factor of [Formula: see text], where [Formula: see text] and [Formula: see text] are arbitrary constants. We have derived field equations of Brans–Dicke theory of gravitation with the help of an axially symmetric anisotropic Bianchi-type space-time. We have determined the cosmological parameters, namely, deceleration parameter, matter energy density, anisotropic dark energy density, BD scalar field, skewness parameter, EoS parameter and jerk parameter. Here, the various phenomena like the Big Bang, expanding the universe, and shift from anisotropy to isotropy are observed in the model. A comprehensive physical debate of these dynamic parameters is provided through a graphical representation. We observe that we have a quintessence model that exhibits a smooth transition from decelerated stage to an accelerated phase of the universe. This situation is in complete agreement with the modern cosmology scenario. Some physical and geometric behaviors are also discussed and discovered to be in excellent agreement with SNe Ia Supernova’s latest observations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3