Spin-Based Fully Nonvolatile Full-Adder Circuit for Computing in Memory

Author:

Amirany Abdolah1,Rajaei Ramin12ORCID

Affiliation:

1. Department of Electrical Engineering, Shahid Beheshti University G. C., Tehran, Iran

2. School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Abstract

As CMOS technology scales down toward below 2-digit nanometer dimensions, exponentially increasing leakage power, vulnerability to radiation induced soft errors have become a major problem in today’s logic circuits. Emerging spin-based logic circuits and architectures based on nonvolatile magnetic tunnel junction (MTJ) cells show a great potential to overcome the aforementioned issues. However, radiation induced soft errors are still a problem in MTJ-based circuits as they need sequential peripheral CMOS circuits for sensing the MTJs. This paper proposes a novel nonvolatile and low-cost radiation hardened magnetic full adder (MFA). In comparison with the previous designs, the proposed MFA is capable of tolerating particle strikes regardless of the amount of charge induced to a single node and even multiple nodes. Besides, the proposed MFA offers low power operation, low area and high performance as compared with previous counterparts. One of the most important features suggested by the proposed MFA circuit is full nonvolatility. Nonvolatile logic circuits remove the cost of high volume data transactions between memory and logic and also facilitate power gating in logic-in-memory architectures.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3