High Spin Polarization and Thermoelectric Efficiency of Half-Metallic Ferromagnetic CrYSn (Y=Ca, Sr) of Half-Heusler Compounds

Author:

Bouadjemi B.1,Lantri T.1,Matougui M.1,Houari M.1,Bentata R.1,Aziz Z.1,Bentata S.12

Affiliation:

1. Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000, Algeria

2. Mustapha Stambouli University, BP 305, Mascara 29000, Algeria

Abstract

In the present work we have performed self-consistent ab-initio calculation using the full-potential linearized augmented plane-wave method (FP-LAPW), based on the density functional theory (DFT) as implemented in the Wien2k code to study the structural, electronic, magnetic, thermodynamic and thermoelectric properties of the half-heusler compound CrYSn ([Formula: see text], Sr) using generalized gradient approximation (GGA) described by Perdew–Burke–Ernzerhof (PBE), GGA+U and the modified Beck–Johnson correction (mBJ), the obtained results show that the compound is stable in the ferromagnetic state (FM) in [Formula: see text] phase on one hand and has a half-metallic character (metallic nature in spin up channel and semiconductor one in spin down channel with an indirect gap) on the other hand thus, the compound is a good candidate for spintronic applications, moreover it shows a very interesting thermoelectric predisposition in the minority spin or spin down channel at room temperature consisting of a very high Seebeck coefficient, high electrical conductivity and figure of merit near unity for the two compounds. The thermodynamic properties of CrCaSn and CrSrSn compounds using Gibbs code are studied for the first time. This study showed that these compounds can be used in extreme thermodynamic conditions. Since no experimental data were reported until now concerning this compound, our theoretical predictions of electronic, thermodynamic and thermoelectric properties are likely to be experimentally verified.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3