Affiliation:
1. Beuth Hochschule fur Technik, Luxemburger Str. 10, 13353 Berlin, Germany
Abstract
This paper presents a review of basic concepts of the boundary element method (BEM) for solving 3D half-space problems in a homogeneous medium and in frequency domain. The usual BEM for exterior problems can be extended easily for half-space problems only if the infinite plane is either rigid or soft, since the necessary tailored Green’s function is available. The difficulties arise when the infinite plane has finite impedance. Numerous expressions for the Green’s function have been found which need to be computed numerically. The practical implementation of some of these formulas shows that their application depends on the type of impedance of the plane. In this work, several formulas in frequency domain are discussed. Some of them have been implemented in a BEM formulation and results of their application in specific numerical examples are summarized. As a complement, two formulas of the Green’s function in time domain are presented. These formulas have been computed numerically and after the application of the Fourier Transformation compared with the frequency domain formulas and with a FEM calculation.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Acoustics and Ultrasonics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献