Simulation of Sound Propagation Over an Infinite Impedance Plane by Using a Fast Multipole BEM

Author:

Zheng Chang-Jun1ORCID,Liu Wen-Yu1,Zhang Yong-Bin1,Bi Chuan-Xing1,Gao Hai-Feng2,Chen Hai-Bo3

Affiliation:

1. Institute of Sound and Vibration Research, Hefei University of Technology, Hefei, Anhui 230009, P. R. China

2. College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China

3. CAS Key Laboratory of Mechanical, Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China

Abstract

In this paper, a half-space fast multipole BEM is developed for the simulation of three-dimensional acoustic problems above an infinite impedance plane. The half-space impedance Green’s function involving a complex line source is used, so that both mass-like and spring-like impedance boundary conditions on the infinite plane can be explicitly satisfied and the infinite plane is not required to be discretized. The Burton–Miller method is employed to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Image relations of the multipole expansion coefficients are used and the half-space impedance Green’s function is modified to apply such relations to avoid calculating, translating and saving the multipole/local expansion coefficients in the image domain. An automatic integrator with adaptive interval subdivision is further adopted to calculate the line integral contained in the M2L translation formula accurately and efficiently. Numerical examples are given to show the validity and potential of the method.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3