CAT'S EYE RADIATION WITH BOUNDARY ELEMENTS: COMPARATIVE STUDY ON TREATMENT OF IRREGULAR FREQUENCIES

Author:

MARBURG STEFFEN1,AMINI SIA2

Affiliation:

1. Institut für Festkörpermechanik, Technische Universität, 01062 Dresden, Germany

2. School of Computing, Science and Engineering, University of Salford, Greater Manchester, M5 4WT, UK

Abstract

This paper reviews a number of techniques developed to overcome the well-known nonuniqueness problem in boundary integral formulations of acoustic radiation. Although the problem has received much attention, comparative studies are hardly known in this field. Furthermore, the problem has often been studied using an unsuitable example, namely a simple radiating sphere. In this case, often the addition of one collocation point in the centre of the sphere suffices to remove the nonuniqueness problem for a large range of wavenumbers. In contrast to the radiating sphere, the radiating cat's eye structure is considered in this paper. Solution of the discretized ordinary Kirchhoff–Helmholtz integral equation, also known as the Surface Helmholtz Equation, reveals a large number of so-called irregular frequencies, i.e. frequencies where the BEM fails. The paper compares the performance of different methods in alleviating this failure. The CHIEF method and its variation due to Rosen et al. are found to encounter difficulties at high frequencies. A much better performance is obtained by combining the Kirchhoff–Helmholtz integral equation with its normal derivative. In particular the method of Burton and Miller and a modification of it which avoids evaluating the hypersingular operator at nonsmooth points are tested. Both methods seem to provide reliable solutions. The modified method encounters minor failures in the frequency response function at a geometric singularity, although performing surprisingly well in many cases. More tests need to be carried out to assess fully the effectiveness of this method which allows easy use of continuous quadratic elements. However, it is the Burton and Miller formulation which appears to be the most reliable for acoustic radiation analysis. The use of CHIEF and its variations cannot be recommended.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Acoustics and Ultrasonics

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3