Comparing Open-Source BEM solvers for analysing wave energy converters

Author:

Raghavan V,Lavidas G,Metrikine A V

Abstract

Abstract Ocean wave energy has immense potential and can provide at least twice as much electricity as globally produced now due to its high energy density. In order to efficiently extract this energy and make this commercially viable, Wave Energy Converters (WECs) need to interact with the resource in an optimized way for the expanse of sea states. This interaction is critical to power production by these devices and hence an accurate modelling of this is paramount. The Boundary element method (BEM) based on the linear potential flow theory has yielded accurate results at low computational costs when compared to complex Computational Fluid Dynamics methods. Hydrodynamic Analysis of Marine Structures (HAMS) and Capytaine are recently developed open-source BEM frequency domain solvers, originally created for large marine structures. These solvers have since been utilized for studying wave energy converters, though, for very few converter geometries. Owing to the implementation of parallelization in both HAMS and Capytaine, both these solvers could be capable for significantly lower computational costs as compared to the traditional BEM solvers such as Nemoh. This research aims to compare hydrodynamic coefficients and computational costs in Nemoh, HAMS and Capytaine for various WEC geometries.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3