Effects of Mn Doping on Zinc Oxide Films Prepared by Spray Pyrolysis Technique

Author:

Singh Bhavana1,Shrivastava S. B.2,Ganesan V.3

Affiliation:

1. Department of Applied Physics, Jabalpur Engineering College, Jabalpur, M.P., India

2. School of Studies in Physics, Vikram University, Ujjain, M.P., India

3. UGC-DAE, Consortium for Scientific Researches, Indore, M.P. India

Abstract

The work deals with the preparation of Zinc Oxide (ZnO) thin films on microscopic glass substrate by spray pyrolysis technique. The systematic study on the influence of Mn doping up to 15% has been performed. The structural studies revealed that pure and doped film has hexagonal structure. In order to reduce the internal strain due to Mn doping, the crystallite size decreases. The atomic force microscopy (AFM) measurement shows the decrease in grain size and roughness with doping. The resistivity curve shows a clear hump corresponding to smaller Mn doping ([Formula: see text]) around [Formula: see text]. This hump was found to reduce with the increase in Mn concentration and for [Formula: see text], beyond which it vanishes completely. This is attributed to critical behavior of resistivity and may be due to the scattering of carriers by magnetic spin fluctuation via exchange interaction. The optical measurement shows the shift in absorption edge of Mn doped ZnO films toward the longer wavelength side. This correlates the reduction in grain size as a function of Mn concentration. The optical bandgap goes down, whereas refractive index increases with dopant concentration.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Computer Science Applications,Condensed Matter Physics,General Materials Science,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3