SIZE-DEPENDENT PIEZOELECTRICITY AND ELASTICITY DUE TO THE ELECTRIC FIELD-STRAIN GRADIENT COUPLING AND STRAIN GRADIENT ELASTICITY

Author:

XU LIANG1,SHEN SHENGPING1

Affiliation:

1. State Key Laboratory for Strength and Vibration of Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China

Abstract

A size-dependent nonclassical Bernoulli–Euler beam model based on the strain gradient elasticity is proposed for piezoelectric nanowires. The governing equations and the corresponding boundary conditions are naturally derived from the variational principle. Different from the classical piezoelectric beam theory, the electric field–strain gradient coupling and the strain gradient elasticity are both taken into account. Static bending problem of a cantilever piezoelectric nanobeam is solved to illustrate the effect of strain gradient. The present model contains material length scale parameters and can capture the size dependent piezoelectricity and elasticity for nanoscale piezoelectric structures. The numerical results reveal that the deflections predicted by the present model are smaller than that by the classical beam theory and the effective electromechanical coupling coefficient is dramatic enhanced by the electric field–strain gradient coupling effect. However, the differences in both the deflections and effective EMC coefficient between the two models are very significant when the beam thickness is very small; they are diminishing with the increase of the beam thickness. This model is helpful for understanding the electromechanically coupling mechanism and in designing piezoelectric nanowires based devices.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3