Affiliation:
1. Ilmenau University of Technology, Department of Technical Mechanics, Max-Planck-Ring 12, Ilmenau 98693, Germany
Abstract
The motivation of this work is formed by the biological behavior of a receptor cell (sensory system). It is modeled as a spring-mass-damper oscillator with a spatial disturbance signal acting on the frame and an inner active element that generates a force acting on the mass. Both the system parameters and the excitation signal are supposed to be unknown. The goal is to achieve a predefined movement of the mass, such as tracking a set point trajectory or stabilization. Thus, a controller is required to act on the system using the control force as input in such a way that the desired behavior is generated. This is done by means of high-gain-stabilization. Like its biological paradigm, the receptor is in a permanent state of adaption. This means that recurring disturbances, such as wind acting on the vibrissa, are damped in order to achieve λ-stabilization. To achieve this control goal and at the same time deal with unknown systems, adaptive controllers are introduced. These adaptive control strategies are compared with an adaptive fuzzy approach.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献