Functionally Graded Soft Dielectric Elastomer Phononic Crystals: Finite Deformation, Electro-Elastic Longitudinal Waves, and Band Gaps Tunability via Electro-Mechanical Loading

Author:

Alam Zeeshan1,Sharma Atul Kumar1ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Rajasthan 342037, India

Abstract

Active tuning of elastic wave band gaps received significant attention in the recent past. To this end, soft dielectric elastomers (DEs) have indicated great promise owing to their capability to undergo large reversible deformations and deformation-dependent constitutive properties. In this paper, we investigate the longitudinal wave band gaps an infinite periodic soft functionally graded dielectric elastomer subjected to electro-mechanical biasing fields. Material properties of the functionally graded DE are described by the power law. The nonlinear hyperelastic compressible neo–Hookean model is employed for characterizing the constitutive behavior of the soft functionally graded dielectric elastomer. The finite element method with Bloch–Floquet theory is employed for finding the band-structure of the infinitely periodic soft functionally graded DE structure. A parametric study brings out the effect of biasing fields and power law exponent on the band gap characteristics. The biasing mechanical prestress, the electric displacement field show significant influence on position and the width of band gaps. The inferences reported here can find their potential use in the design of soft DE wave devices with tunable band structures.

Funder

Science and Engineering Research Board

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3