A Comparison Between Fractional-Order and Integer-Order Differential Finite Deformation Viscoelastic Models: Effects of Filler Content and Loading Rate on Material Parameters

Author:

Khajehsaeid Hesam1

Affiliation:

1. School of Engineering–Emerging Technologies, University of Tabriz, Tabriz, Iran

Abstract

Elastomers or rubber-like materials exhibit nonlinear viscoelastic behavior such as creep and relaxation upon mechanical loading. Differential constitutive models and hereditary integrals are the main frameworks followed in the literature for modeling the viscoelastic behavior at finite deformations. Regular differential operators can be replaced by fractional-order derivatives in the standard models in order to make fractional viscoelastic models. In the present paper, the relaxation behavior of elastomers is formulated both in terms of ordinary (integer-order) and fractional differential viscoelastic models. The derived constitutive equations are fitted to several experimental data to compare their efficiency in modeling the stress relaxation phenomenon. Specifically, a fractional viscoelastic model with one fractional dashpot (FD) is compared with two ordinary models including respectively one and two ordinary dashpots (OD). The models are compared in fitting accuracy, number of required material parameters and also variation of parameters from one compound to another to clarify the effects of filler content and deformation rate. It is shown that, the results of the ordinary model with one OD is not good at all. The fractional model with one FD and the ordinary model with two ODs provide good fittings for all compounds whereas the former uses only three parameters and the latter uses five material parameters. For the fractional model, the order of the Maxwell element and the associated relaxation time approximately remain the same for different compounds of each material at certain loading rates, but it is not the case for the ordinary differential models.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3