Analysis of super-harmonic resonance and periodic motion transition of fractional nonlinear vibration isolation system

Author:

Qu Minghe12ORCID,Yang Qing2,Wu Shaopei1,Ding Wangcai1,Li Jie2,Li Guofang1

Affiliation:

1. School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou, China

2. College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China

Abstract

The precision instruments and equipment are often utilized in low-frequency and micro-amplitude vibration systems, in which many vibration isolators of rubber materials are widely used. Ignoring the low-frequency amplitude will result in errors in the fatigue life design of the vibration isolators and predicting the dynamic response of each frequency band accurately becomes necessary. However, integer-order models cannot describe the frequency dependence of rubber materials, while the fractional-order models can describe it instead. On the other hand, the elastic restoring force is strongly nonlinear under large deformation, and the vibration of the nonlinear system contains multiple harmonic components. In order to solve those issues, the fractional nonlinear Nishimura model is used to characterize the constitutive relation of vibration isolators such as air springs, which are made of carbon black filled natural rubber. The high-order harmonic balance method is used to obtain the steady-state response of the vibration system, while the fourth-order Runge–Kutta method is applied to simulate the dynamic response of the system in the low-frequency region, and the Lyapunov exponent is used to determine the stability of the system. Furthermore, the influence of parameters on the amplitude–frequency characteristics of different frequency bands is also studied, and a method to solve the optimal damping coefficient is proposed based on the primary resonance amplitude–frequency curves. The results show that there is a diversity of periodic motions in the process of adjacent super-harmonic resonance transition. Numerical simulations also demonstrate that multi-periodic motions coexist in the system. The motion transition law between the polymorphic coexistence region and its adjacent regions is summarized.

Funder

National Natural Science Foundation of China

Science and Technology Department of Gansu Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3