Infinite index extensions of local nets and defects

Author:

Del Vecchio Simone1,Giorgetti Luca1

Affiliation:

1. Dipartimento di Matematica, Università di Roma Tor Vergata, Via Della Ricerca Scientifica, 1, I-00133 Roma, Italy

Abstract

The subfactor theory provides a tool to analyze and construct extensions of Quantum Field Theories, once the latter are formulated as local nets of von Neumann algebras. We generalize some of the results of [62] to the case of extensions with infinite Jones index. This case naturally arises in physics, the canonical examples are given by global gauge theories with respect to a compact (non-finite) group of internal symmetries. Building on the works of Izumi–Longo–Popa [44] and Fidaleo–Isola [30], we consider generalized Q-systems (of intertwiners) for a semidiscrete inclusion of properly infinite von Neumann algebras, which generalize ordinary Q-systems introduced by Longo [58] to the infinite index case. We characterize inclusions which admit generalized Q-systems of intertwiners and define a braided product among the latter, hence we construct examples of QFTs with defects (phase boundaries) of infinite index, extending the family of boundaries in the grasp of [7].

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wightman Fields for Two-Dimensional Conformal Field Theories with Pointed Representation Category;Communications in Mathematical Physics;2023-12

2. Quantum operations on conformal nets;Reviews in Mathematical Physics;2022-12-06

3. A planar algebraic description of conditional expectations;International Journal of Mathematics;2022-04

4. Galois Correspondence and Fourier Analysis on Local Discrete Subfactors;Annales Henri Poincaré;2022-01-26

5. Skew-product dynamical systems for crossed product C⁎-algebras and their ergodic properties;Journal of Mathematical Analysis and Applications;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3