Generalized orbifold construction for conformal nets

Author:

Bischoff Marcel1

Affiliation:

1. Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville, TN 37240, USA

Abstract

Let [Formula: see text] be a conformal net. We give the notion of a proper action of a finite hypergroup [Formula: see text] acting by vacuum preserving unital completely positive (so-called stochastic) maps on [Formula: see text] which generalizes the proper action of a finite group [Formula: see text]. Taking the fixed point under such an action gives a finite index subnet [Formula: see text] of [Formula: see text], which generalizes the [Formula: see text]-orbifold net. Conversely, we show that if [Formula: see text] is a finite inclusion of conformal nets, then [Formula: see text] is a generalized orbifold [Formula: see text] of the conformal net [Formula: see text] by a unique finite hypergroup [Formula: see text]. There is a Galois correspondence between intermediate nets [Formula: see text] and subhypergroups [Formula: see text] given by [Formula: see text]. In this case, the fixed point of [Formula: see text] is the generalized orbifold by the hypergroup of double cosets [Formula: see text]. If [Formula: see text] is a finite index inclusion of completely rational nets, we show that the inclusion [Formula: see text] is conjugate to an intermediate subfactor of a Longo–Rehren inclusion. This implies that if [Formula: see text] is a holomorphic net, and [Formula: see text] acts properly on [Formula: see text], then there is a unitary fusion category [Formula: see text] which is a categorification of [Formula: see text] and [Formula: see text] is braided equivalent to the Drinfel’d center [Formula: see text]. More generally, if [Formula: see text] is a completely rational conformal net and [Formula: see text] acts properly on [Formula: see text], then there is a unitary fusion category [Formula: see text] extending [Formula: see text], such that [Formula: see text] is given by the double cosets of the fusion ring of [Formula: see text] by the Verlinde fusion ring of [Formula: see text] and [Formula: see text] is braided equivalent to the Müger centralizer of [Formula: see text] in the Drinfel’d center [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bosonic rational conformal field theories in small genera, chiral fermionization, and symmetry/subalgebra duality;Journal of Mathematical Physics;2024-05-01

2. Haploid Algebras in $$C^*$$-Tensor Categories and the Schellekens List;Communications in Mathematical Physics;2023-05-12

3. Bayesian inversion and the Tomita–Takesaki modular group;The Quarterly Journal of Mathematics;2023-03-23

4. Quantum operations on conformal nets;Reviews in Mathematical Physics;2022-12-06

5. Duality defects in E8;Journal of High Energy Physics;2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3