Theoretical investigations of an information geometric approach to complexity

Author:

Ali Sean Alan1ORCID,Cafaro Carlo2

Affiliation:

1. Albany College of Pharmacy and Health Sciences, 12208 Albany, New York, USA

2. SUNY Polytechnic Institute, 12203 Albany, New York, USA

Abstract

It is known that statistical model selection as well as identification of dynamical equations from available data are both very challenging tasks. Physical systems behave according to their underlying dynamical equations which, in turn, can be identified from experimental data. Explaining data requires selecting mathematical models that best capture the data regularities. The existence of fundamental links among physical systems, dynamical equations, experimental data and statistical modeling motivate us to present in this paper our theoretical modeling scheme which combines information geometry and inductive inference methods to provide a probabilistic description of complex systems in the presence of limited information. Special focus is devoted to describe the role of our entropic information geometric complexity measure. In particular, we provide several illustrative examples wherein our modeling scheme is used to infer macroscopic predictions when only partial knowledge of the microscopic nature of a given system is available. Finally, limitations, possible improvements, and future investigations are discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3