Osteoporosis Detection Using Machine Learning Techniques and Feature Selection

Author:

Iliou Theodoros1,Anagnostopoulos Christos-Nikolaos1,Anastassopoulos George2

Affiliation:

1. Cultural Technology and Communication Department, Social Science School, University of the Aegean, Mytilene, 81100, Lesvos island, Greece

2. Medical Informatics Laboratory, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece

Abstract

Osteoporosis is a disease of bones that leads to an increased risk of fracture and it is characterized by low bone mineral density and micro-architectural deterioration of bone tissue. In this article, the dataset consists of 3426 subjects (1083 pathological and 2343 healthy cases) whose diagnosis was based on laboratory and osteal bone densitometry examination. In all cases, four diagnostic factors for osteoporosis risk prediction, namely age, sex, height and weight were stored for later evaluation with the selected classifiers. In order to categorize subjects into two classes (osteoporosis, nonosteoporosis), twenty machine learning techniques were assessed, based on their popularity and frequency in biomedical engineering problems. All classifiers have been evaluated using the wellknown 10-fold cross validation method and the results are reported analytically. In addition, a feature selection method identified that with the use of only two diagnostic factors (age and weight), similar performance could be achieved. The scope of the proposed exhaustive methodology is to assist therapists in osteoporosis prediction, avoiding unnecessary further testing with bone densitometry.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3