Identification of gynecological pathologies by applying classification algorithms: Results of a local study

Author:

Cruz Eddy Sánchez-Dela1,Fuentes-Ramos Mirta1,Loeza-Mejía Cecilia-Irene1,José-Guzmán Irahan-Otoniel1

Affiliation:

1. Artificial Intelligence Lab., National Technological, Misantla Campus, Veracruz, Mexico

Abstract

Purpose: Vaginal infections are prevalent causes of gynecological consultations. This study introduces and evaluates the efficacy of four Machine Learning algorithms in detecting vaginitis cases in southern Mexico. Methods: Utilizing Simple Perceptron, Naïve Bayes, CART, and AdaBoost, we conducted classification experiments to identify four vaginitis subtypes (gardnerella, candidiasis, trichomoniasis, and chlamydia) in 600 patient cases. Results: The outcomes are promising, with a majority achieving 100% accuracy in vaginitis identification. Conclusion: The successful implementation and high accuracy of these algorithms demonstrate their potential as valuable diagnostic tools for vaginal infections, particularly in southern Mexico. It is crucial in a region where health technology adoption lags behind, and intelligent software support is limited in gynecological diagnoses.

Publisher

IOS Press

Reference60 articles.

1. A decision-theoretic generalization of on-line learning and an application to boosting;Freund;Journal of Computer and System Sciences,1997

2. A logical calculus of the ideas immanent in nervous activity;McCulloch;The Bulletin of Mathematical Biophysics,1943

3. SS Padecen mujeres infección vaginal al menos una vez en su vida. (Retrieved from: https://www.gob.mx/salud/prensa/181-padecen-mujeres-infeccion-vaginal-al-menos-una-vez-en-su-vida (02/05/2018), 2018).

4. Castellanos R. , Hernández T. , Prevención, Diagnóstico y Tratamiento de VAGINITIS INFECCIOSA en Mujeres en edad Reproductiva En el Primer nivel de Atención Evidencias y Recomendaciones. (Retrieved from: http://www.cenetec-difusion.com/CMGPC/IMSS-081-08/ER.pdf (03/12/2019), (2014).

5. Barbara H. , Williams Ginecología. (McGraw-Hill, 2014).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3