Heuristic and Genetic Algorithm Approaches for UAV Path Planning under Critical Situation

Author:

Silva Arantes Jesimar da1,Silva Arantes Márcio da1,Motta Toledo Claudio Fabiano1,Júnior Onofre Trindade1,Williams Brian Charles2

Affiliation:

1. University of São Paulo, USP, São Carlos, São Paulo, Brazil

2. Massachusetts Institute of Technology, MIT, Cambridge, USA

Abstract

The present paper applies a heuristic and genetic algorithms approaches to the path planning problem for Unmanned Aerial Vehicles (UAVs), during an emergency landing, without putting at risk people and properties. The path re-planning can be caused by critical situations such as equipment failures or extreme environmental events, which lead the current UAV mission to be aborted by executing an emergency landing. This path planning problem is introduced through a mathematical formulation, where all problem constraints are properly described. Planner algorithms must define a new path to land the UAV following problem constraints. Three path planning approaches are introduced: greedy heuristic, genetic algorithm and multi-population genetic algorithm. The greedy heuristic aims at quickly find feasible paths, while the genetic algorithms are able to return better quality solutions within a reasonable computational time. These methods are evaluated over a large set of scenarios with different levels of diffculty. Simulations are also conducted by using FlightGear simulator, where the UAV’s behaviour is evaluated for different wind velocities and wind directions. Statistical analysis reveal that combining the greedy heuristic with the genetic algorithms is a good strategy for this problem.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo (BR)

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3