Affiliation:
1. Örebro University, MPI@AASS, Örebro, Sweden
2. Southwest Jiaotong University, Chengdu, China
3. University of Technology Sydney, QSI, Sydney, Australia
Abstract
We introduce, study, and evaluate a novel algorithm in the context of qualitative constraint-based spatial and temporal reasoning that is based on the idea of variable elimination, a simple and general exact inference approach in probabilistic graphical models. Given a qualitative constraint network [Formula: see text], our algorithm utilizes a particular directional local consistency, which we denote by [Formula: see text]-consistency, in order to efficiently decide the satisfiability of [Formula: see text]. Our discussion is restricted to distributive subclasses of relations, i.e., sets of relations closed under converse, intersection, and weak composition and for which weak composition distributes over non-empty intersections for all of their relations. We demonstrate that enforcing [Formula: see text]-consistency in a given qualitative constraint network defined over a distributive subclass of relations allows us to decide its satisfiability, and obtain similar useful results for the problems of minimal labelling and redundancy. Further, we present a generic method that allows extracting a scenario from a satisfiable network, i.e., an atomic satisfiable subnetwork of that network, in a very simple and effective manner. The experimentation that we have conducted with random and real-world qualitative constraint networks defined over a distributive subclass of relations of the Region Connection Calculus and the Interval Algebra, shows that our approach exhibits unparalleled performance against state-of-the-art approaches for checking the satisfiability of such constraint networks.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献