Just-In-Time Constraint-Based Inference for Qualitative Spatial and Temporal Reasoning

Author:

Sioutis Michael

Abstract

AbstractWe discuss a research roadmap for going beyond the state of the art in qualitative spatial and temporal reasoning (QSTR). Simply put, QSTR is a major field of study in Artificial Intelligence that abstracts from numerical quantities of space and time by using qualitative descriptions instead (e.g., precedes, contains, is left of); thus, it provides a concise framework that allows for rather inexpensive reasoning about entities located in space or time. Applications of QSTR can be found in a plethora of areas and domains such as smart environments, intelligent vehicles, and unmanned aircraft systems. Our discussion involves researching novel local consistencies in the aforementioned discipline, defining dynamic algorithms pertaining to these consistencies that can allow for efficient reasoning over changing spatio-temporal information, and leveraging the structures of the locally consistent related problems with regard to novel decomposability and theoretical tractability properties. Ultimately, we argue for pushing the envelope in QSTR via defining tools for tackling dynamic variants of the fundamental reasoning problems in this discipline, i.e., problems stated in terms of changing input data. Indeed, time is a continuous flow and spatial objects can change (e.g., in shape, size, or structure) as time passes; therefore, it is pertinent to be able to efficiently reason about dynamic spatio-temporal data. Finally, these tools are to be integrated into the larger context of highly active areas such as neuro-symbolic learning and reasoning, planning, data mining, and robotic applications. Our final goal is to inspire further discussion in the community about constraint-based QSTR in general, and the possible lines of future research that we outline here in particular.

Funder

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Reference97 articles.

1. Alirezaie M, Längkvist M, Sioutis M, Loutfi A (2018) A symbolic approach for explaining errors in image classification tasks. In: IJCAI workshop on learning and reasoning: principles and applications to everyday spatial and temporal knowledge

2. Allen JF (1983) Maintaining knowledge about temporal intervals. Commun ACM 26:832–843

3. Allen JF (1991) Planning as temporal reasoning. In: KR

4. Allen JF, Koomen JAGM (1983) Planning using a temporal world model. In: IJCAI

5. Amaneddine N, Condotta J-F, Sioutis M (2013) Efficient approach to solve the minimal labeling problem of temporal and spatial qualitative constraints. In: IJCAI

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3