Affiliation:
1. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
2. University of Chinese Academy of Sciences, Beijing, China
3. School of Automation, Central South University, Changsha, China
Abstract
Recently, the methods based on Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance in visual place recognition. CNN is a class of multilayer perceptrons, but unlike common multilayer perceptrons that it is not usually fully connected networks. It can acquire more general image features and make the image processing computationally manageable through filtering the connections by proximity. In this paper, we utilize the deep features generated by CNNs and the dynamic time warping (DTW) algorithm for image sequence place recognition. We propose a novel image similarity measurement, which is derived from cosine distance and can better distinguish match and mismatch. Meanwhile, we improve the DTW algorithm to design a local matching method that can reduce time complexity from O(n3) to O(n). To test the proposed method, four datasets (Nordland, Gardens Point, St. Lucia, and UoA datasets) are used as benchmarks; using two traverses in each dataset with one for reference and the other for testing. The results show high precision-recall characteristics of our method in the cases of severe appearance changes. Besides, our method achieves substantial improvements over the methods using the deep feature representations of a single image for recognition, which reflects that the spatiotemporal information contained in the image sequence is significant for the task of visual place recognition. Moreover, the proposed method also shows to outperform the classical sequence-based method SeqSLAM.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献