Wear diagnosis for rail profile data using a novel multidimensional scaling clustering method

Author:

Shang D.1,Su Shuai1,Sun Y. K.1,Wang F.1,Cao Y.1,Yang W. F.2,Li P.2,Zhou J. H.3

Affiliation:

1. School of Automation and Intelligence Beijing Jiaotong University Beijing China

2. CRRC Zhuzhou Electric Locomotive Research Institute Zhuzhou CRRC Times Electric Co. Ltd. Zhuzhou China

3. East China Jiaotong University School of Mechatronics and Vehicle Engineering Nanchang China

Abstract

AbstractThe diagnosis of railway system faults is significant for its comfort, efficiency, and safety. The rail surface wear is the key impact factor when considering the health conditions of rails. This paper accomplishes contactless rail wear diagnosis by using multidimensional scaling based on a novel informational dissimilarity measure (IDM) to cluster intact and different worn rail profile data. The IDM uses weighted‐probability distribution of dispersion patterns to extract accurate time domain features from rail profile data, and the loss of information is minimized, which can greatly improve the accuracy for wear diagnosis. All the analyzing data for real experiments are collected by a laser scanner camera on an inspection car, where heavy‐haul railway rails with different types of surface wear are inspected. Experimental results with simulated and reality‐based data show that the proposed methods can identify worn profile data and discriminate different types of worn profiles more effectively when compared with existing methods. Thus, the proposed method offers a new thinking for the diagnosis of rail surface wear for heavy‐haul railways.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3