Affiliation:
1. Florida Atlantic University, Boca Raton, Florida, USA
Abstract
Predicting the quality of system modules prior to software testing and operations can benefit the software development team. Such a timely reliability estimation can be used to direct cost-effective quality improvement efforts to the high-risk modules. Tree-based software quality classification models based on software metrics are used to predict whether a software module is fault-prone or not fault-prone. They are white box quality estimation models with good accuracy, and are simple and easy to interpret. An in-depth study of calibrating classification trees for software quality estimation using the SPRINT decision tree algorithm is presented. Many classification algorithms have memory limitations including the requirement that datasets be memory resident. SPRINT removes all of these limitations and provides a fast and scalable analysis. It is an extension of a commonly used decision tree algorithm, CART, and provides a unique tree pruning technique based on the Minimum Description Length (MDL) principle. Combining the MDL pruning technique and the modified classification algorithm, SPRINT yields classification trees with useful accuracy. The case study used consists of software metrics collected from a very large telecommunications system. It is observed that classification trees built by SPRINT are more balanced and demonstrate better stability than those built by CART.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献