Ensemble feature ranking approach for software fault prediction

Author:

Agrawalla Bikash1,Shukla Alok Kumar2,Tripathi Diwakar3,Singh Koushlendra Kumar1,Ramachandra Reddy B.1

Affiliation:

1. Department of CSE, National Institute of Technology Jamshedpur, India

2. Thapar Institute of Engineering & Technology, Patiala, Punjab, India

3. Indian Institute of Information Technology Sonepat, India

Abstract

Software fault prediction, which aims to find and fix probable flaws before they appear in real-world settings, is an essential component of software quality assurance. This article provides a thorough analysis of the use of feature ranking algorithms for successful software failure prediction. In order to choose and prioritise the software metrics or qualities most important to fault prediction models, feature ranking approaches are essential. The proposed focus on applying an ensemble feature ranking algorithm to a specific software fault dataset, addressing the challenge posed by the dataset’s high dimensionality. In this extensive study, we examined the effectiveness of multiple machine learning classifiers on six different software projects: jedit, ivy, prop, xerces, tomcat, and poi, utilising feature selection strategies. In order to evaluate classifier performance under two scenarios—one with the top 10 features and another with the top 15 features—our study sought to determine the most relevant features for each project. SVM consistently performed well across the six datasets, achieving noteworthy results like 98.74% accuracy on “jedit” (top 10 features) and 91.88% on “tomcat” (top 10 features). Random Forest achieving 89.20% accuracy on the top 15 features, on “ivy.” In contrast, NB repeatedly recording the lowest accuracy rates, such as 51.58% on “poi” and 50.45% on “xerces” (the top 15 features). These findings highlight SVM and RF as the top performers, whereas NB was consistently the least successful classifier. The findings suggest that the choice of feature ranking algorithm has a substantial impact on the fault prediction models’ predictive accuracy and effectiveness. When using various ranking systems, the research also analyses the trade-offs between computing complexity and forecast accuracy.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3