Probe of the Band Structure of MBE Grown p-Type InMnAs at Ultrahigh Magnetic Fields

Author:

Sun Y.1,Kyrychenko F. V.1,Sanders G. D.1,Stanton C. J.1,Khodaparast G. A.2,Kono J.3,Matsuda Y. H.4,Munekata H.5

Affiliation:

1. Department of Physics, University of Florida, P. O. Box 118440, Gainesville, Florida 32611, USA

2. Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA

3. Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA

4. Institute for Solid State Physics, University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

5. Image Science and Engineering Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan

Abstract

We present a theoretical and experimental study on electronic and magneto-optical properties of p-type paramagnetic InMnAs dilute magnetic semiconductor (DMS) alloys in ultrahigh (> 100 T) external magnetic fields (B). Theoretical calculations are based on an 8-band Pidgeon–Brown model which is generalized to include the wavevector dependence of the electronic states along B as well as s–d and p–d exchange interactions with localized Mn d-electrons. The spin-dependent electronic structure as a function of Mn doping is computed and the dependence of the valence band structure on parameters such as the sp–d exchange interaction strength and effective masses in paramagnetic p- InMnAs alloys are examined. The cyclotron resonance (CR) and magneto-optical properties of InMnAs are calculated using Fermi's golden rule. Two strong CR peaks are observed in p-type InMnAs alloys which correspond to the transitions within either heavy-hole (HH) or light-hole (LH) Landau levels. Furthermore, we also observed strong resonance absorption for electron-active polarization which can occur in p-type semiconductors originating from transitions between the light and heavy hole Landau levels.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3