Terahertz Spin Currents and Inverse Spin Hall Effect in Thin-Film Heterostructures Containing Complex Magnetic Compounds

Author:

Seifert T.1,Martens U.2,Günther S.3,Schoen M. A. W.4,Radu F.5,Chen X. Z.6,Lucas I.7,Ramos R.8,Aguirre M. H.9,Algarabel P. A.10,Anadón A.9,Körner H. S.4,Walowski J.2,Back C.4,Ibarra M. R.7,Morellón L.7,Saitoh E.8,Wolf M.1,Song C.6,Uchida K.11,Münzenberg M.2,Radu I.5,Kampfrath T.112

Affiliation:

1. Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany

2. Institute of Physics, Ernst Moritz Arndt University, 17489 Greifswald, Germany

3. Multifunctional Ferroic Materials Group, ETH Zürich, 8093 Zürich, Switzerland

4. Institute for Experimental and Applied Physics, University of Regensburg, 93053 Regensburg, Germany

5. Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2A, 12489 Berlin, Germany

6. Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084 Beijing, China

7. Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza, Spain

8. WPI Advanced Institute for Materials Research, Tohoku University, 980-8577 Sendai, Japan

9. Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain

10. Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza and Consejo, Superior de Investigaciones Científicas, E-50009 Zaragoza, Spain

11. National Institute for Materials Science, 305-0047 Tsukuba, Japan

12. Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany

Abstract

Terahertz emission spectroscopy (TES) of ultrathin multilayers of magnetic and heavy metals has recently attracted much interest. This method not only provides fundamental insights into photoinduced spin transport and spin–orbit interaction at highest frequencies, but has also paved the way for applications such as efficient and ultrabroadband emitters of terahertz (THz) electromagnetic radiation. So far, predominantly standard ferromagnetic materials have been exploited. Here, by introducing a suitable figure of merit, we systematically compare the strength of THz emission from [Formula: see text]/Pt bilayers with [Formula: see text] being a complex ferro-, ferri- and antiferromagnetic metal, that is, dysprosium cobalt (DyCo5), gadolinium iron (Gd[Formula: see text]Fe[Formula: see text]), magnetite (Fe3O4) and iron rhodium (FeRh). We find that the performance in terms of spin-current generation not only depends on the spin polarization of the magnet’s conduction electrons, but also on the specific interface conditions, thereby suggesting TES to be a highly interface-sensitive technique. In general, our results are relevant for all applications that rely on the optical generation of ultrafast spin currents in spintronic metallic multilayers.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3