Nonlinear Dynamic and Stability Analysis of an Edge Cracked Rotating Flexible Structure

Author:

Azimi Milad1,Moradi Samad2

Affiliation:

1. Aerospace Research Institute, (Ministry of Science, Research and Technology) Tehran, Iran

2. Islamic Azad University, North Tehran Branch, Tehran, Iran

Abstract

The Homotopy Perturbation Method (HPM) is applied to investigate the nonlinear free and forced vibration behavior of the rotating cracked beam. Nonlinear governing equations considering the two-dimensional (2D) large flexible structure in a rotating reference frame considering centrifugal forces are obtained by the Lagrangian approach and the Assumed Mode Method (AMM). The crack is modeled as an elastic nonlinear massless rotational spring, which divides the beam into two parts. The Rayleigh–Ritz method is used to discretize the governing system of equations of the motion. Stability analysis along with bifurcation and phase portrait represents the different behavior of the system, depending on the variations of base angular velocity, crack location, and stiffness. Moreover, it is shown that as the rotational speed increases, a tensile force appears along the neutral axis, stiffening the cracked structure, which results in shifting the backbone to the right and highly affects the nonlinear features of the system. The results obtained through a comparative study of the HPM with first-order approximation and numerical simulations (Runge–Kutta algorithm) demonstrate an accurate and effective solution for structures with nonlinear dynamics.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3