Aerodynamic Characteristics Analysis of Ultra-High-Speed Elevator with Different Hoistway Structures

Author:

Jing Hao1,Zhang Qing1,Zhang Ruijun1,He Qin1

Affiliation:

1. School of Mechanical and Electrical Engineering, Shandong Jianzhu University, Jinan, Shandong Province 250101, P. R. China

Abstract

The high-speed airflow generated by ultra-high-speed elevators causes significant aerodynamic force, which seriously reduces the comfort and safety of passengers. First, a multi-parameter general model of ultra-high-speed elevator was established, and the three-dimensional numerical simulation of incompressible flow in the ultra-high-speed elevator was simulated. The correctness of the model and method was verified by experiments and grid-independence analyses. On this basis, the variation in the aerodynamic forces and the pressure in the hoistway was analyzed. Finally, the influence of different hoistway structures and parameters of ventilation holes on the aerodynamic forces and hoistway pressure were analyzed. The results showed that the opening of ventilation holes significantly reduced the aerodynamic forces and hoistway pressure for most of the period of the car’s operation period, but both the aerodynamic forces and hoistway pressure showed a sudden increase–decrease process. The aerodynamic forces and hoistway pressure were highly sensitive to changes in the hoistway blockage ratio, the cross-sectional area of the ventilation hole, and the position of the ventilation hole. When a pair of ventilation holes were opened, those in the middle of the hoistway reduced aerodynamic problems in the hoistway to the greatest extent. The increase in the connection angle between the ventilation hole and the hoistway eliminated the low-speed recirculation zone at the ventilation hole and increased the total volume of exhaust air at the ventilation hole.

Funder

Shandong Province Nature Science Foundation, China

Key Research Development Project of Shandong Province, China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3