Investigation of the aerodynamic characteristics of the entire operation process of the car–counterweight system within the annular flow field of ultra-high-speed elevators

Author:

Zeng XiangruiORCID,Zhang RuijunORCID,He QinORCID,Yang Longlong,Cong DongshengORCID,Wang Xilong

Abstract

The ultra-high-speed elevator car–counterweight system will experience substantial aerodynamic effects when operating at high speeds in the annular flow field, particularly at the moment of intersection. These effects will have a considerable impact on the stability of the elevator's operation. This study utilized the unsteady Reynolds-averaged Navier–Stokes approach to investigate the aerodynamic characteristics of the car–counterweight system's entire operation process. The ultra-high-speed elevator three-dimensional transient model is created using dynamic layering mesh technology and then validated through experiments. We investigate the impact of three crucial factors—acceleration, car height, and contact ratio—on the aerodynamic characteristics of the car and the ventilation effect in the hoistway. Specifically, we analyze the instantaneous variations in the aerodynamic force of the car during the intersection process. The results indicate a rapid change in the car's drag and lift at the moment of intersection, with a greater magnitude of change observed in the pressure drag. The acceleration increases gradually, while the drag peak at the intersection time decreases by 1.8%, 3.0%, and 3.6%, respectively. Additionally, the hoistway exhaust volume ratio decreases by 0.9%, 1.5%, and 2.0%. Compared to the drag peak, the lift peak is more responsive to variations in car height. The contact ratio exhibits a sequential increase, but the lift peak demonstrates an uneven upward pattern with increments of 3.07%, 10.35%, and 16.88%. This study greatly enhances the investigation of the aerodynamic characteristics of ultra-high-speed elevators and offers a crucial point of reference for optimizing elevator design in engineering.

Funder

Natural Science Foundation of Shandong Province

the major scientific and technological innovation project of Dezhou

Publisher

AIP Publishing

Reference42 articles.

1. Safety rules for the construction and installation of lifts;European Standard,1998

2. Safety rules for the construction and installation of lifts;Chinese Standard,2003

3. Analysis of vibration monitoring data of flexible suspension lifting structure based on time-varying theory;Sensors,2020

4. Effects of passive and combined aerodynamic control on the aerodynamic characteristics of an elliptical cylinder;J. Wind Eng. Ind. Aerodyn.,2021

5. Effects of embankment layouts on train aerodynamics in a wind tunnel configuration;J. Wind Eng. Ind. Aerodyn.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3