Experimental and Numerical Investigation of the Polyurea-Coated Ultra-High-Performance Concrete (UHPC) Column under Lateral Impact Loading

Author:

Gao Bin1,Wu Jun1,Jia Pengcheng2,Li Shutao3,Yan Qiushi4,Xu Shilin5

Affiliation:

1. School of Urban Rail Transportation, Shanghai University of Engineering Science, Shanghai 201620, P. R. China

2. Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University, Shanghai 200092, P. R. China

3. Institute of Defence Engineering, AMS, PLA, Beijing 100036, P. R. China

4. Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, P. R. China

5. Shanghai Dragon Industrial Engineering Co., Ltd., Shanghai 200122, P. R. China

Abstract

It was found that polyurea coating could improve the integrity and the corresponding durability of the structural components. However, the strengthening effect of polyurea coatings for structures built with emerging ultra-high-performance concrete (UHPC) is still unknown due to the lack of studies. Therefore, this paper investigated the effect of the polyurea coating on the lateral impact resistance of UHPC columns through a combined numerical and experimental study. A total of five specimens were fabricated, including two UHPC columns and three UHPC columns with polyurea coating. To better characterize the structural response under dynamic loading, impact cases with different drop weight impact heights and axial force ratios were employed. The results showed that the UHPC column with polyurea coating exhibited superior lateral impact resistance compared to the UHPC column. The presence of the axial force increased the lateral impact stiffness and further reduced the deflection of the specimen. In contrast, the polyurea coating improved the specimen’s ductility and mitigated the peak impact force, thereby maintaining the specimen’s integrity without sudden shear failure. A three-dimensional finite element (FE) model of polyurea-coated UHPC columns under impact loading was then established and confirmed the experimental results. With the validated FE model, an intensive parametric study was conducted to investigate the effects of polyurea thickness, axial force ratio and impact energy on the lateral impact resistance of the UHPC column. The presence of the polyurea coating could significantly improve the lateral impact resistance of the specimen, thereby preventing the shear failure of the UHPC column, and thus, the effective thickness of the polyurea layer for the UHPC column was determined to be 2–6[Formula: see text]mm. The outcome of this research demonstrates the great merits of polyurea coating in improving the ductility and integrity of the UHPC column under lateral impact loading.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3