Dynamic Response of Buried Natural Gas Pipelines under Horizontal Directional Drilling Loads

Author:

Zhang Kai1ORCID,Chen Liqiong1,He Ting1,Xu Duo1,Huang Weihe1,Yang Song1,Zeng Zhiqiang1

Affiliation:

1. School of Petroleum and Gas Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China

Abstract

Due to the unobservable nature of underground construction and the destructive nature of horizontal directional drilling rigs with high power, this type of construction has become one of the most important causes of failure of long-distance natural gas pipelines. In recent years, horizontal directional drilling construction has caused pipeline accidents frequently. Once the accident occurs, the normal operation of natural gas pipelines cannot be ensured. Therefore, studying the damage mechanism of buried natural gas pipelines under horizontal directional drilling loads is important for the safe operation of pipelines. This paper combines the construction characteristics of horizontal directional drilling and the actual situation of natural gas pipelines to explore the relationship between horizontal directional drilling and pipelines. The force situation of pipelines after contacting directional drilling bits is analyzed by the drill bit-soil-pipe finite element model created in the ABAQUS software. The Johnson–Cook ductile damage model was utilized to determine the pipe’s damage condition. The sensitivity analysis results show that he order of the impact of key parameters on the dynamic response of the pipe is bit thrust [Formula: see text] wall thickness [Formula: see text] bit diameter [Formula: see text] pipe diameter [Formula: see text] bit speed [Formula: see text] number of bit teeth [Formula: see text] pipe operating pressure. Therefore, priority should be given to controlling the size of the drilling thrust and the speed of the drill bit to reduce the damage to pipelines by horizontal directional drilling construction. In addition, appropriately reducing the pipeline operating pressure can also reduce the risk of the pipeline being damaged by horizontal directional drilling construction.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3