Structural Health Monitoring Using Synchrosqueezed Wavelet Transform on IASC-ASCE Benchmark Phase I

Author:

Sanchez Wilson D.1,de Brito Jose V.1,Avila Suzana M.2

Affiliation:

1. Universidade de Brasilia, Campus Universitario Darcy Ribeiro, CEP 70910-900, Brasilia, DF, Brazil

2. Universidade de Brasilia, Campus UnB Gama, Setor Leste, CEP 72444-240, Gama, DF, Brazil

Abstract

Civil structures suffer deterioration either for years of service, deficiency due to environmental factors or damages caused by factors such as earthquakes, winds, impact loads, and cyclical loads. When a structure ages, it is necessary to know its state of health and make a decision of maintenance or replacement. When a structure such as a bridge or building is subjected to destructive environmental forces, determining its state of health becomes a priority since its recovery is urgently required to function normally. Structural Health Monitoring (SHM) is a technology that aims to prevent the collapse of structures and loss of human life through early diagnosis of the health status of a structure. There are a large number of damage detection methods that can be classified into (1) non-destructive testing methods, (2) dynamic characteristics-based damage detection methods, (3) dynamic response-based, (4) multi-scale damage detection method and (5) damage detection methods with consideration of uncertainties. In this work, it is implemented synchrosqueezed wavelet transform (SWT), which can be classified as a methods based on the dynamic response. To validate the robustness of the method it is identified first, the natural frequencies of the Benchmark Phase I without damage, which consists of a steel structure of 4-story [Formula: see text] bay 3D steel frame structure subjected to ambient vibrations. Subsequently, some damage patterns are validated according to IASC-ASCE SHM Task Group. The results obtained in the identification of natural frequencies are compared with those reported in literature. SWT was efficient, presenting a minimum error of 0.12[Formula: see text] and a maximum of 3.06[Formula: see text] in the identification of natural frequencies about the AISCE-ASCE group model. SWT overcomes some other damage detection methods, which are deficient in the identification of closely spaced frequencies, commonly present in many civil structures due to symmetric geometry or similar physical properties in different directions.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3