User-defined high impulsive frequency acquisition model for mechanical damage identification

Author:

Kaloni Smita1ORCID,Tiwari Prashant2,Singh Ghanapriya3ORCID

Affiliation:

1. Department of Civil Engineering, National Institute of Technology Uttarakhand, Srinagar Garhwal, India

2. Department of Mechanical Engineering, National Institute of Technology Uttarakhand, Srinagar Garhwal, India

3. Department of Electronics and Communication Engineering, National Institute of Technology Kurukshetra, Haryana, India

Abstract

In the past few decades, time–frequency (TF) methods have become increasingly popular in the field of modal identification and structural health monitoring. The general and significant shortfalls of the TF models are the distributed and vague frequency components as an output. To overcome the cons of the initial TF technique, segregation of the modes incorporated within the affected vibration signatures evolved eventually. The most utilized and preferred technique can be named empirical mode decomposition (EMD) and its variants. However, these variants, along with the basic framework, possess the multi-mode tendency, which further compels the extension of the whole damage identification procedure. This work presents the development of a temporally evolved, generalized and high impulsive frequency acquisition model for structural damage identification. To meet the said outcome, variational mode decomposition (VMD) is considered an optimization-based signal decomposition tool that utilizes the contents of the generated modal responses. This work also aims to investigate the applicability of VMD for the purpose of structural damage identification for the following situations: the old ADA steel bridge under vehicle-induced vibration for various damage scenarios; a three-story shear frame building model. Along with the said validation of the proposed condition monitoring model, this paper addresses the need of stable and reliable novel damage indicator (DI) as a statistical alteration of the extracted instantaneous outputs. The proposed DI as the mean of the ratio of the instantaneous outputs collectively indicates the relative capacity of the structure to produce a stable response. The selected outputs are instantaneous frequency, phase and energy, taken into consideration to depict the physical alterations in the measured response. The proposed DI evidently explains the physical relation of the involved factors with the degradation causes in the considered structure. The DI also reflects the remaining usefulness of the system and provides the measurements in safety aspects to the operators. The results so obtained are well competent for real bridge structures under the influence of dynamic loading conditions induced by vehicle movements.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strain modal response and vibration damping optimization of tower for wind power equipment;Journal of Vibroengineering;2024-06-18

2. Comparing UNet, UNet++, FPN, PAN and Deeplabv3+ for Gastrointestinal Tract Disease Detection;2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT);2023-10-20

3. Comparing ARIMA, Linear Regression, Random Forest, and LSTM for Time Series Forecasting: A Study on Item Stock Predictions;2023 4th IEEE Global Conference for Advancement in Technology (GCAT);2023-10-06

4. Leaf Disease Detection Using Transfer Learning;Communications in Computer and Information Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3