Design of a Compact Actuated Compliant Elbow Joint

Author:

Kleinjan Johannes Gerard1,Dunning Alje Geert1,Herder Justus Laurens2

Affiliation:

1. Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628CD Delft, The Netherlands

2. Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628CD Delft, The Netherlands

Abstract

Compactness is a valuable property in designs of assistive devices and exoskeletons. Current devices are large and stigmatizing in the eyes of the users. The cosmetic appearance will increase by reducing the size. The users want a device that is small enough to be worn underneath the clothes, so it becomes unnoticeable. The goals of this paper are (1) to provide an overview of the shape-changing-material-actuated large-deflection compliant rotational joints, (2) provide new introduced performance indicators that evaluate the designs on performance with respect to volume or weight and (3) design a compact active assistive elbow device as a case study. In order to reach these goals, two evolving fields of study are brought together that have great potential to reduce the size of exoskeletons: smart materials and compliant rotational joints. Smart materials have the ability to change their shape, which make them suitable as actuators. Compliant joints can be compact, since they are made out of one piece of material. An overview of shape-changing-material-actuated large-deflection compliant rotational joints is presented. Performance indicators are proposed to evaluate the existing designs and the prototype. As a case study a compact actuated rotational elbow joint is presented. An antagonistic actuator made from shape memory alloy wires is able to carry an external load and to actuate to move the arm to different positions. The compliant joint is optimized to balance the weight of the arm and to auto-align with the rotational axis of the human elbow joint. A prototype is able to generate a volume specific stall torque of 5.77 ⋅ 103 Nm/m3, produces a work density of 7.27 ⋅ 103 J/m3 based on volumes including isolation covers and the half-cycle efficiency of the device is 3.6%. The prototype is able to balance and actuate a torque of 1.1 Nm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3