Experimental and Numerical Study on Free Vibration of Multiwall Carbon Nanotube Reinforced Composite Plates

Author:

Patel Asha1,Das Rahul1,Sahu Shishir Kumar1

Affiliation:

1. Civil Engineering Department, National Institute of Technology, Rourkela, Odisha, India

Abstract

The effects of different percentages of multiwall carbon nanotube (MWCNT) on natural frequencies of polymer composite plates of varying edge-to-thickness ratio, aspect ratio and boundary conditions at ambient temperature are investigated experimentally and numerically. Conventional hand lay-up technique is used to prepare the MWCNT polymer composite plates with different percentages of carbon nanotubes (CNTs) mixed to the polymer. The elastic properties are determined experimentally by conducting uniaxial tensile test in the universal testing machine INSTRON 8862 as per ASTM D-3039. A set of experiments were conducted for the natural frequencies of vibration of MWCNT composite plates using the Bruel and Kjaer Fast Fourier Transform (FFT) analyzer with pulse platform. Detailed parametric studies are carried out to determine the effect of weight fraction of CNTs, aspect ratios, edge-to-thickness ratios and boundary conditions on the natural frequency of composite plates. Numerical solutions were obtained by the commercial finite element method (FEM) package ABAQUS. A simulation model is developed using the same geometrical and material properties determined experimentally from which the frequency responses are obtained. The simulation results are found to be consistent with the experimental ones. The results obtained showed an increase in elastic properties and natural frequencies up to 0.3 wt.% of MWCNT and decrease thereafter for all cases due to agglomeration of CNT in the polymer matrix. The morphology and dispersion of the CNTs in composites at micro level are investigated by using scanning electron microscopy (SEM) to further corroborate the behavior of specimens.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3