Experiments and Analysis on Stability of the Sandwich Structures with Soft Core

Author:

Zhang Dongjian12,Zheng Xitao12,Wang Chongzhe12,Wu Zhen12

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xian 710072, P. R. China

2. Institute of Aircraft Composite Structures, Northwestern Polytechnical University, Xian 710072, P. R. China

Abstract

In this paper, first a complete buckling experiment of the sandwich beams with the foam core is carried out, which includes the manufacturing of specimens and their experimental verification. Second, a refined sinusoidal zig-zag theory (RSZT) is established, which can describe the zig-zag effect during the in-plane compression of sandwich beam and accommodate the transverse shear free surface boundary conditions. Based on the established model combined with Hu–Washizu variational principle, a two-node beam element has been developed to address the buckling problem of the sandwich beams. Thus, the established beam element is able to accommodate interlaminar continuous conditions of transverse shear stress. Several examples have been investigated to validate the accuracy of the established method. The comparative analysis of the results including experimental data, the results acquired from three-dimensional finite element (3D-FEM) and diverse models has been made. Comparative analysis shows that the accurate buckling loads can be acquired from the established model. Nevertheless, other models discarding the continuous conditions of transverse stresses among the adjacent layers largely overestimate the critical loads.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3