Affiliation:
1. School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, 17507, India
Abstract
This study investigates the influence of large amplitude vibration on geometrically imperfect sandwich curved panels embedded with gradient metallic cellular (GMC) core using an efficient nonlinear finite element formulation based on higher-order shear deformation theory (HSDT). The cores of the sandwich curved panels are assumed to have three distinct porosity distributions. The material properties of the sandwich curved panel’s GMC core layer vary in the thickness direction as a function of porosity coefficient and mass density. The present nonlinear finite element model is validated with limited results available in the open literature, and few new results are also computed that can be used as a benchmark solution. The influence of porosity coefficient, porosity distribution type, amplitude ratio, imperfection amplitude, and curvature ratio on the free vibration characteristics of the geometrically imperfect sandwich curved panels with the GMC core are studied in detail.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献