Dynamic Response of a Defected Periodic Viaduct to a Moving Point Load

Author:

Sha Xuan1,Lu Jian-Fei2,Lan Tian23,Jeng Dong-Sheng14

Affiliation:

1. Department of Civil Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China

2. Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA

3. Ginkgo LLC, Incline Village, NV 89451, USA

4. Griffith School of Engineering, Cities Research Centre, Griffith University Gold Coast Campus, QLD 4222, Australia

Abstract

A defected periodic viaduct (DPV) is an infinite viaduct consisting of a left and a right semi-infinite ordered periodic viaducts (OPV) and one or several in-between defected spans different from the standard span of the OPV. Currently, no methodology is available in the literature for assessing the dynamic response of a DPV to a moving load, as the presence of the defected spans breaks the periodicity of the OPV. In this study, a new FEM model for estimating the dynamic response of a DPV with one defected span to a moving load is proposed. To establish the model, the time-space domain (TSD) moving load is decomposed into the sum of its constituent frequency wavenumber domain (FWD) load components first. For the DPV subjected to the FWD load component, the response of the left and right semi-infinite OPVs of the DPV can be divided into two parts, namely, the free wave field and the scattered wave field. To determine the free wave field of the left and right semi-infinite OPVs of the DPV, the FEM equations for an individual span of the viaduct are established and applied to the two OPVs. The scattered wave field in the two semi-infinite OPVs consists of the characteristic waves of the OPV and can be determined using the FEM eigenvalue equations for the OPV free of external loads. Applying the span FEM equations to the defected span and using the expressions for the free wave field and the scattered wave field yield the FWD response of the DPV. The time-space domain response of the DPV can then be retrieved by superposing all the FWD responses of the DPV. Numerical simulations are conducted to investigate the influence of the defected span on the dynamic response of the DPV. For the DPV, there are two kinds of the resonant frequencies, namely, the resonant frequencies common to the corresponding OPV and the additional resonant frequencies due to the presence of the defected span. In some cases, the magnitudes of the responses at the additional resonant frequencies may be larger than those at the common resonance frequencies. Therefore, when conducting the design for a periodic viaduct, it is important to account for the influence of the defected span on the dynamic response of the periodic viaduct.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterization of elastic wave propagation in high-speed railway tracks considering temperature effects;Journal of Vibration and Control;2024-06-24

2. A Double-Rail Phononic Crystal Model for the Ballasted Track;International Journal of Structural Stability and Dynamics;2022-02-07

3. A review on the research progress of mechanical meta-structures and their applications in rail transit;Intelligent Transportation Infrastructure;2022

4. Dynamic Response of Multi-bay Frames Subjected to Successive Moving Forces;International Journal of Structural Stability and Dynamics;2019-04

5. A dynamic model for the response of a periodic viaduct under a moving mass;European Journal of Mechanics - A/Solids;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3