A Minimum Discrepancy Method for Weibull Distribution Parameter Estimation

Author:

Xie Liyang12ORCID,Wu Ningxiang12ORCID,Yang Xiaoyu12ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, P. R. China

2. Ministry of Education Key Laboratory of Vibration and Control of Aero-Propulsion System, Northeastern University, Shenyang, P. R. China

Abstract

The most applied principles for parameter estimation are maximum likelihood and least square error. This paper presents a new principle with regard to the parameter estimation of the three-parameter Weibull distribution. By transforming the cumulative distribution function, constructed is a mapping from the value of the random variable and its corresponding cumulative distribution probability to the scale parameter. The scale parameter estimated by such a mapping is the random variable value and the corresponding cumulative distribution probability dependent when the shape parameter and/or location parameter applied in the mapping is subject to error. Given a set of random variable values or a set of sample values, a larger error in the shape/location parameter brings about larger differences between the scale parameter values obtained with the individual random variable values or sample values, respectively. Based on such a causal relationship between the discrepancy and the shape/location parameter value applied in the mapping relation, a new parameter estimation method is proposed. For the Weibull distribution parameter estimation according to a set of sample values, the right shape parameter and location parameter are those minimizing the discrepancy between the scale parameter values obtained with the individual sample values, respectively. Case studies demonstrate that the proposed method outperforms the maximum likelihood method and the Weibull plot-based least squares method.

Funder

National Major Science and Technology Projects of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3