Fine-tuning weibull distribution parameters in Morocco’s Tarfaya and Tangier wind farms using two-stage swarm optimization

Author:

Douiri Moulay Rachid1ORCID

Affiliation:

1. Department of Applied Physics, Faculty of Science and Technology, Cadi Ayyad University, Marrakesh, Morocco

Abstract

This study assesses the efficacy of particle swarm optimization (PSO) in estimating scale ( c) and shape ( k) parameters of the Weibull distribution model for wind energy forecasting at two key wind farm sites in Morocco— Tarfaya in the south and Tangier in the north, utilizing real wind data from 2022. Employing a novel square frequency error objective function to enhance parameter accuracy, the study adopts a two-stage training approach involving recursive least-square estimation and PSO fine-tuning. Validation with artificial data underscores PSO’s effectiveness under diverse wind conditions. Parameter sensitivity analysis identifies four optimal PSO configurations, with the PSO-4 model exhibiting superior performance. Comparative analysis against traditional and heuristic optimization methods consistently demonstrates PSO-4’s lowest root-mean-square error (RMSE) and mean absolute error (MAE), high coefficients of determination ( R2), and shortest computation time. The research highlights PSO-4 model as a precise and efficient tool for Weibull distribution parameter estimation in wind energy forecasting, showcasing robust convergence across both wind farm sites.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3