Dynamic Reliability Analysis of Running Safety and Stability of a High-Speed Maglev Train on a Guideway Bridge

Author:

Wang Lidong123,Bu Xiumeng1,Hu Peng12,Han Yan12,Cai Chunsheng4

Affiliation:

1. School of Civil Engineering, Changsha University of Science & Technology, Changsha, Hunan 410114, P. R. China

2. Key Laboratory of Safety Control of Bridge Engineering, Ministry of Education (Changsha University of Science & Technology), Changsha, Hunan 410114, P. R. China

3. China Construction Fifth Engineering Division Co., Ltd., Changsha, Hunan 410004, P. R. China

4. Department of Bridge Engineering, Southeast University, Nanjing, Jiangsu 210092, P. R. China

Abstract

The dynamic performance of high-speed maglev trains, a next-generation rapid transit system, has received continuous attention in recent years. In this study, a dynamic reliability analysis method for a high-speed maglev train–guideway coupled system was proposed. First, a refined model of the maglev vehicle–bridge interaction system was established, where the vehicle subsystem was simulated as a rigid body-spring-damper model with 101 degrees of freedom. The guideway subsystem was simulated as a finite element model, and these two subsystems were coupled as an entire system through a magnet–rail interaction model with a proportional-derivative (PD) controller. Second, a dimension-reduction method for the simulation of representative samples of track irregularities was developed, and thus the number of random variables in the system was reduced to four. Finally, an efficient method for the calculation of the dynamic reliability of a maglev train–guideway coupled system was proposed using the probability density evolution method-based equivalent extreme value principle. With numerical examples, the accuracy of the maglev train–guideway interaction model was verified by comparing it with field measurement data from the Shanghai high-speed maglev line. The accuracy of the proposed dynamic reliability analysis method was confirmed by comparing three types of results, that is, the mean value time-history curve, the probability density function, and the cumulative distribution function of extreme values, obtained by the Monte Carlo method. Finally, the dynamic reliability of the running safety and stability of the maglev vehicle at a speed of 430 km/h and the variation laws of the dynamic reliabilities with train speed were examined in detail.

Funder

Young Scientists Fund

Major Research Plan

Open Fund of Key Laboratory of Safety Control of Bridge Engineering, Ministry of Education

Natural Science Foundation of Hunan Province

Postdoctoral Research Foundation of China

Postgraduate Scientific Research Innovation Project of Hunan Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3