Joint Damage Identification in Frame Structures by Integrating a New Damage Index with Equilibrium Optimizer Algorithm

Author:

Aval Seyed Bahram Beheshti1,Mohebian Pooya1

Affiliation:

1. Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract

Beam-column joints are responsible for maintaining the integrity and stability of frame structures, and any damage to these critical components can endanger the overall safety and reliability of the structure. Hence, early detection of structural joint damage is of paramount importance. However, most of the available structural damage identification methods focus on identifying damage in structural members, and relatively fewer methods have been developed so far for assessing damage in structural joints. In view of this, the present study proposes a new two-stage method for joint damage identification of frame structures. In the first stage, an efficient damage indicator, called residual moment-based joint damage index (RMBJDI), is developed and applied to detect the location of potentially damaged joints. This damage indicator can help to reduce the number of involved damage variables by excluding healthy joints from the problem. In the second stage, the reduced dimension damage identification problem is formulated as an optimization problem and is further tackled by employing a robust meta-heuristic algorithm, namely equilibrium optimizer (EO), to determine the damage severity of suspected damaged joints. In order to assess the capability and effectiveness of the presented joint damage identification method, two numerical examples of frame structures are conducted under both noise-free and noisy conditions. The results demonstrate that the proposed two-stage method, which integrates RMBJDI with EO, is a highly accurate and powerful tool for localizing and quantifying the joint damage in frame structures.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3