Internal and External Cancellation Conditions for Free Vibration of Damped Simple Beams Traversed by Successive Moving Loads

Author:

Wang Z. L.1,Tan Z. X.2,Chen L.1,Yang D. S.3ORCID,Xu H.1,Shi K.1,Yang Y. B.14

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing, P. R. China

2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, P. R. China

3. Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia

4. School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, P. R. China

Abstract

In this paper, the internal and external cancellation phenomena for damped beams subjected to multi-moving loads are investigated in detail. To start, the theory for the vibration of a simply supported beam is revisited by including the effect of damping. For the first time, a simple expression is derived for the free vibration of the damped beam under multi-moving loads. Based on the concept of local minimum, two cancellation conditions are identified. One is the internal cancellation, which relates to the inherent property of the beam and is conventionally known. The other is the newly formulated external cancellation that relates to the number and spacing of moving loads. For comparison, both the resonant condition and the optimal criterion for span length of the bridge are also briefed. By comparing with the classical solution, the present simple expression for the free vibration of the beam is firstly validated. Then the factors affecting the cancellation are investigated against various load cases and damping levels. The results show that external cancellation occurs more frequently due to the increase in the number and spacing of the moving loads. The damping of the beam has a leaking effect on cancellation, in that nonzero vibration may occur, but it is also quickly damped out by damping itself.

Funder

National Natural Science Foundation of China

Chongqing Science and Technology Commission

China Postdoctoral Science Foundation

Australian Research Council

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3