Damage Detection in Initially Nonlinear Structures Based on Variational Mode Decomposition

Author:

Xin Yu1,Li Jun1,Hao Hong1

Affiliation:

1. Centre for Infrastructural Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia

Abstract

Nonlinear characteristics in the dynamic behaviors of civil structures degrade the performance of damage detection of the linear theory based traditional time- and frequency-domain methods. To overcome this challenge, this paper proposes a damage detection approach for nonlinear structures based on Variational Mode Decomposition (VMD). In this approach, the measured dynamic responses from nonlinear structures under earthquake excitations are adaptively decomposed into a finite number of monocomponents by using VMD. Each decomposed mono-component represents an amplitude modulated and frequency modulated (AMFM) signal with a limited frequency bandwidth. Hilbert transform is then employed to identify the instantaneous modal parameters of the decomposed monomodes, including instantaneous frequencies and mode shapes. Based on the identified modal parameters from the decomposed structural dynamic responses, two damage indices are defined to identify the location and severity of structural damage, respectively. To validate the effectiveness and accuracy of the proposed approach, a nonlinear seven-storey shear building model with four different damage cases under earthquake excitations is used in the numerical studies. In experimental verifications, data from shake table tests on a 12-storey scaled reinforced concrete frame structure with different earthquake excitations are analyzed with the proposed approach. The results in both numerical studies and experimental validations demonstrate that the proposed approach can be successfully applied for nonlinear structural damage identification.

Funder

Australian Research Council Laureate Fellowships

the China Scholarship Council Postgraduate Scholarship

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3